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Cavity pressure-based machine learning 
service for advanced injection molding 
processes

Abstract / motivation
Injection molding is the state-of-the-art process used to produce 
plastic parts for various applications. To increase productivity, 
highly standardized and automated processes are established with 
quality control and reproducibility as the main keys to success. 
Measurement of cavity pressure has proven to be a powerful 
parameter for characterizing the quality of the resultant parts. On 
this basis, cavity pressure measurement systems such as ComoNeo 
from Kistler allow real-time evaluation of the process and automat-
ed separation of parts that fail to meet the requirements. This is 
achieved by comparing the actual readings from cavity pressure 
measurements with a previously stored reference curve. 

This highly effective method has played a major part in improv-
ing quality, reducing waste, and increasing the stability of the 
injection molding production process. Parts are evaluated and 
rejects are separated with a high degree of reliability – but even 
so, the operator’s intuition and know-how are still critical factors 
in defining corrective actions. 

Thus far, operators have been required to set the rejection 
limits for quality control manually in advance of production 
– a time-consuming task that can only be performed by experi-
enced personnel. We now propose a new approach based on 
artificial intelligence and data science that aims to achieve two 
goals: first, to improve the user experience by eliminating the 
need to define limits; and second, to improve the performance of 
quality prediction by reducing the number of false positives (parts 
of bad quality which the system erroneously classifies as good).

To achieve these objectives, we make use of an advanced machine 
learning model based largely on cavity pressure measurements 
together with some additional machine data. The model is trained 
to detect anomalies in the parameter space spanned by individu-
ally engineered mathematical features. By combining domain 
expertise in injection molding with the mathematical technique of 
time series analysis, this approach allows in-depth understanding 
and interpretation of the model’s predictions. The results are used 
to detect anomalies (i.e. suspected deviations) in the process. As 
a further refinement, we have incorporated a model explanation 
approach based on a feature importance algorithm into a newly 
developed second algorithm. This method enables operators to 
determine possible causes of quality deviations so they can initiate 
adjustments of the relevant process parameters.
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1.  Injection molding – process and challenges

The injection molding process is the standard method for mass 
production of plastic products. The brief explanation below is offered 
as an introduction to the process. For a thorough explanation of 
the injection molding process and a general layout of the injection 
molding machine, please refer to Johannaber and Michaeli [1]. 

The plastic material is melted in the plastification or injection 
unit and is then injected into a mold containing a cavity which 
replicates the negative form of the desired part. Once the melt has 
cooled down in the temperature-controlled mold and the plastic 
has solidified, the ready-shaped part is ejected. This may appear to 
be a simple process, but the detailed configuration and setup are 
highly complex operations that require expert know-how – due in 
particular to the large number of process parameters that influence 
the required quality features.

In order to monitor and control the process, the relevant process 
values must be measured. It has been shown (e.g. by Bichler [2]) 
that cavity pressure is a powerful parameter for describing and 
subsequently monitoring the process [2]. The measured pressure 
curve in the cavity can generally be segmented into different 
process phases:
1.  The filling phase, when the cavity is filled at a controlled 

flow rate. This process is controlled by the movement of the 
transversal screw in the injection unit. As soon as the cavity is 
100% filled, the velocity control flow front becomes irrelevant; 
at this point, the control parameter is switched from “screw 
position” to “pressure” (this is known as the switchover point).

2.  The compression phase, when the prevailing pressure is 
adjusted to the desired holding pressure; this should compen-
sate for material shrinkage in the subsequent holding phase. 
As a result of this adjustment, the pressure in the cavity 
increases to its maximum value.

3.  The holding phase, when the adjusted pressure level presses 
a certain amount of fresh melt into the cavity to compensate 
for the volume shrinkage of the plastic material as it solidifies. 
This can continue until the open area in the “gating zone” 
freezes and closes the open melt channel. The material in 
the cavity then cools down and shrinks. This is clearly visible 
as a downgrading of the pressure profile until atmospheric 
pressure is reached. 

The progression of the pressure reading over time (see Figure 1) 
during the production cycle has proven to be a very good indicator 
of possible deviations in the process. 

 

Fig. 1: Typical pressure curve in injection molding processes including character-
istic points. 

Every pressure curve provides a fingerprint that reflects the quality 
of the process and the produced part. Various factors may influence 
this pressure curve, so these same factors can also affect quality. 
They include environmental conditions (such as temperature), 
machine aging, mold configuration, material or process deviations 
and – of course – the machine settings (see: Wortberg [3]). 

ComoNeo from Kistler [4] allows real-time sorting of produced parts 
by qualifying the cavity pressure curve during the injection process 
with certain boundary conditions. Before the process can begin, this 
approach requires manual calibration which can only be performed 
by an experienced operator. Due to the vast parameter space and 
the countless dependencies involved, plastics injection molding 
may be regarded as an error-prone process requiring intensive user 
control [1]. Although the majority of applications operate at high 
levels of quality and automation, additional quality outcome and 
process stability are also influenced greatly by the operator’s skill 
and intuition. 

In the Industry 4.0 context, we aim to make the process easier to 
use for operators – while improving quality and process reliabil-
ity – by using advanced machine learning (ML) algorithms based 
on cavity pressure data. By combining the information output 
from the algorithm with process knowledge and additional data 
from various sensors inside the machine, we are able to deduce 
additional information about the reasons for quality deviations. 
This development is an important step towards complete 
automation of the process and will greatly enhance ease of use 
for operators.
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Recent years have seen increasing efforts to improve the process 
using data-based machine learning methods. Schiffers et al. [5] 
offer a comprehensive overview of unsupervised anomaly 
detection in injection molding. The authors make use of an 
ensemble method to cluster their input features, enabling rough 
classification of the clusters and, hence, identification of failure 
causes. They also stress the importance of the feature engineer-
ing step in the overall pipeline. Jung et al. [6] compare several 
ML models for quality prediction in injection molding processes. 
They use feature importance tests to identify the most relevant 
features. Chihun Lee et al. [7] use a weight-prediction model to 
develop a recommender system. The authors’ approach is based 
on simulation data and transfer learning. They also make use of 
geometric features to capture the variance of multiple parts in 
their model input data.
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2.  Experimental setup and data exploration 

Training and evaluation of a machine learning model require the 
acquisition of a suitable dataset. A comprehensive representation 
of the underlying distribution of all good cases is also useful when 
training an anomaly detection model. In the experiment conducted 
for this White Paper, a typical plastic object was selected as an 
example: the produced part was approx. 43.5 mm long and 
22 mm high, with wall thicknesses of approx. 2 mm. The part is 
used to mount small signs on boxes used in sensor production at 
Kistler. The most important section is the snap connection, which 
should neither be too small nor too large (see Figure 2). 

Fig. 2: Typical plastic part used in this study. The plastic clip is used to mount signs 
on boxes.

This part has been produced more than one thousand times. 
15 different machine settings were selected during the experiment, 
not only to increase the variance of good part distribution but also 
to induce bad parts (=anomalies) for the model evaluation. A new 
batch number was set for each machine setting. Each batch began 
and ended at a specific cycle number. The machine produced a few 
parts between one machine setting (batch) and the next in order 
to reach a stable point in production.

The cavity pressure, screw position, hydraulic pressure, nozzle 
temperature and clamping force were recorded during the experi-
ment, matched with the akvisIO software from Kistler [8] and then 
exported. Data analysis was performed offline. The cavity pressure 
sensor was placed at the end of the cavity – the last point to be 
reached by the melt.

Quality labels were assigned in a manual process, and every second 
part was marked with a consecutive number. An optical setup in 
combination with Kistler’s KiVision software [9] was then used to 
measure characteristic lengths and acquire information about the 
surface quality of the parts and their general appearance. More than 
420 parts were labeled in the course of the experiment. 

Figure 3a) shows the 15 batches with the corresponding labels for 
each part. For each batch, one parameter adjustment was varied 
systematically. Many batches consisted entirely of either good or bad 
parts, but only a few of them included both good and bad parts.

Figure 3b) shows three different pressure curves from three differ-
ent batches. All of them have similar characteristics, but there are 
also significant differences between them. Although curves 1 and 4 
seem closer to each other, it is curves 1 and 11 which correspond 
to good quality, whereas curve 4 corresponds to a part of bad 
quality. To capture the differences as well as the similarities 
between the pressure curves, domain expertise in plastics was 
integrated into the subsequent feature engineering step.

a)

b)

Fig. 3: Overview of the 15 different batches. One parameter was varied per batch. 
a) Quality outcome of the different batches. b) Examples of corresponding 
pressure curves. 
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3. Feature engineering

The feature engineering step was the stage of the data science 
pipeline where the domain knowledge of the plastics experts came 
into play. This helped to reduce the very high-dimensional 
time-series feature space into a lower-dimensional space of 
interpretable features.

Figure 1 highlights the most relevant points in the pressure curve as 
seen from the domain expert’s perspective. The first of these was 
the start point of the injection phase: this is not directly visible in the 
cavity pressure curve, but it must be close to the point where the 
melt reaches the sensor for the first time. The start point is where 
the first increase in the measured pressure occurs. However, the 
measurements also included low-level noise which led to unsmooth 
curves; this was particularly noticeable in the first and second 
gradients. Rather than on the original curve, therefore, the start 
point was set at the point where the curve gradient of a fitted spline 
with smoother attributes rose above 100 bar/sec for the first time. 

The second relevant point was the switchover point from the 
injection to the compression phase. This point is visible in the 
cavity pressure curve, and it could be calculated with the help of 
the second gradient. More specifically, the switchover point is 
defined by the maximum in the second gradient between the start 
and the maximum point.

The third relevant point was the maximum point, which also marks 
the boundary between the compression and holding pressure 
phases. ComoNeo calculates the maximum pressure point directly, 
so it was already available and could be used directly.

The fourth relevant point from the domain expert’s perspective 
was the midend point. This point is not directly linked to the 
process phases but is adjacent to the point in time when the inflow 
has solidified. The midend point is defined as the first point where 
the first gradient of the smooth spline is less than –40 bar/sec, 
starting at the end point and moving towards the maximum point.

The fifth and final relevant point was the end point, where the 
pressure has largely decreased after the maximum point and is 
stable at a lower level. Viewed in terms of the process, this is the 
point when the holding pressure is removed. The algorithm 
defines the end point as the first point where the first gradient of 
a smooth fitted spline is less than –25 bar/sec, starting at the end 
of the curve and moving towards the maximum point. 

It is very important that the point detection algorithms are 
sufficiently robust to cope with multiple curve shapes; otherwise, 
anomaly detection would be greatly influenced by the points 
themselves rather than the resulting features. Figure 4 shows 
a variety of different curve shapes and proves the robustness 
of the  algorithms. 

These points could be taken as the basis for calculating several 
features, including the x and y values as well as the gradients at 
these points.
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Fig. 4: The algorithms are robust and allow reliable deduction of the relevant 
points in the pressure curves.

Features based on the Dynamic Time Warping (DTW) method 
were engineered in order to capture the similarity between 
a specific pressure curve and an average pressure curve for a good 
part. As opposed to the simple Euclidean distance between two 
curves (Batista et al.[10]), DTW makes it possible to compare time 
series in respect of temporal shifts, as shown in Figure 5 (Salvador 
and Chan [11], Ding et al. [12]).
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Fig. 5: Example of DTW for typical pressure curves.
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In addition to the cavity pressure-based features, ten further 
features based on machine data were calculated. These features 
depend on the clamping force, hydraulic pressure, screw position, 
and nozzle temperature. Of the total of 25 features, 15 (including 
the DTW features) are based on cavity pressure; the remaining ten 
features based on other sensor data were manually engineered and 
fed into the machine learning model. Table 1 shows an overview of 
all the features.
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Fig. 6: A two-dimensional representation of the feature space with the help of the 
t-SNE method.

Figure 6 shows a two-dimensional representation of the feature 
space with the help of the t-distributed stochastic neighbor 
embedding (t-SNE) method (see: van der Maaten [13]). The 
presence of several batch clusters implies that the pressure curves 
were influenced by certain variations in the machine settings. This 
effect is also captured by the lower-dimensional, manually 
engineered features.

Feature name Feature description

Starttime Time of first (steep) increase of pressure

Gradient Start Switch Gradient from start point to 
switchover point

Integral Start Switch Integral from start point to switchover 
point

Switchover Pressure Pressure at switchover point

Integral Switch Max Integral from switchover point to 
maximum point

Max Pressure Maximum pressure

Max Time Time at maximum pressure

2nd Gradient at Max Second gradient at maximum pressure

Integral Max End Integral from maximum point to end 
point

Gradient Max Midend Gradient from maximum point to 
midend point

Gradient Midend End Gradient from midend point to end 
point

Endtime Time at end point (curve is mostly flat 
afterwards)

DTW Start Max DTW from start point to maximum 
point

DTW Max End DTW from maximum point to end 
point

DTW DTW overall

Clamping Force Max Maximum clamping force

Clamping Time Max Time at maximum clamping force

Clamping Force Integral Overall integral of clamping force

Hydraulic Pressure Max Maximum hydraulic pressure

Hydraulic Time Max Time at maximum hydraulic pressure

Hydraulic Integral Overall integral of hydraulic pressure

Screw Integral Overall integral of screw position

Screw Switchover Switchover position of screw

Screw Gradient Gradient from beginning to 
switchover point

Nozzle Temperature 
Mean

Mean value of nozzle temperature 
curve

Table 1: Overview of all calculated features. The first section lists all features based on 
cavity pressure; the second section summarizes all features based on similarity and 
DTW; and the last section lists all features based on different machine parameters.
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4. Model and cause-of-failure qualifier

There were several preconditions for the development of the 
quality prediction model. First: the number of anomalies in 
injection molding processes is usually very low, so data from bad 
parts cannot be utilized for model development and training. 
This means that direct allocation to different defect classes is not 
a feasible approach in this use case. To address this issue, we 
selected an approach based on anomaly detection which aims to 
identify parts whose behavior deviates from that of good parts.

Second: from the domain expert’s perspective, a purely black-box 
machine learning model would not provide adequate trust. Decisions 
reached by the model would not be comprehensible to an operator. 
This created the requirement for some form of model explanation.

The training data for the experiment was based on 80 parts from 
batches which only included good parts. Data from all batches was 
used as test data.

Several state-of-the-art machine learning models were analyzed 
(local outlier factor (Breunig et al. [14]), one-class support vector 
machine (Schölkopf et al. [15]), and robust covariance (Rousseeuw 
and Van Driessen [16]). An isolation forest delivered the best 
performance for the relevant dataset. Isolation forests work on the 
principle of the decision tree algorithm (Liu et al.[17]). They isolate 
the outliers by randomly selecting one feature from the given set 
of features, and then randomly selecting a split value between 
the maximum and minimum values of the selected feature. This 
random partitioning of the features creates smaller paths in the 
trees for the anomalous data values, thus making it possible to 
distinguish them from normal data values.

With the help of confusion matrices (Figure 7), we compared the 
performance of this approach with the ground-truth data, which 
was acquired with the help of an optical setup in combination with 
Kistler’s KiVision software [9]. The accuracy score of the model is 
85%: in other words, 85% of the quality labels – either bad or good 
– were correctly predicted by the model. Depending on the applica-
tion – for example, production of medical devices – the primary 
goal is to minimize the number of false positive predictions. There is 
usually a trade-off between the number of false positives and false 
negatives; in this case, however – as shown in Figure 7 – the number 
of false negatives was still at an acceptable level, taking account of 
the wide process range. 

Conventional monitoring

Isolation forest

a)

b)

Fig. 7: Convolution matrix to show the results from the isolation forest model.

We observed that the isolation forest model had some difficulty 
in distinguishing normal parts from those with anomalies, especially 
in batches that included both good and bad parts. (These good 
parts were not used to train the model because the numbers of 
good parts in such cases were too low to achieve a reasonable 
train-test split.) We assume that the number of training samples 
used was not high enough to capture the entire distribution 
(variety) of good parts, and that more training data would help to 
continue improving the model’s performance.

As mentioned, one of the development preconditions was some 
form of model explanation that would enhance user acceptance.  
A black-box model that allows no insights into the reasons 
behind a prediction does not create adequate trust on the part 
of the users.
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One example of an appropriate approach that allows deeper 
insights into tree-based models is the extraction of feature 
importances. This approach opens up the possibility of identify-
ing features that are relevant to the model outcome. Unfortu-
nately, however, most feature importance algorithms suffer 
from a common disadvantage because they do not clearly show 
whether a particular feature produced a moderate effect across all 
predictions or a high effect for only a few samples. 

One excellent tool which is highly suitable for identifying feature 
importances – and which can even circumvent the drawback 
just mentioned – is the SHapley Additive exPlanations (SHAP) 
method (Lundberg [18]). The SHAP method is a game theoretic 
approach that can explain the output of any tree-based machine 
learning model. Individual feature importances are supplied for 
each sample, making it possible to discover exactly which features 
contributed most to the model outcome for one single part. This 
method can be compared to a linear regression model which clearly 
identifies the feature/weight combination that contributed most to 
the model outcome. With the SHAP method, however, this informa-
tion can be extracted from very complex tree-based models such as 
XGBoost (Chen and Guestrin [19]) or isolation forests.

Figure 8 shows one possible result of the SHAP algorithm. The 
top ten features of the model are listed vertically. The color in 
Figure 8a) indicates whether a feature value was high or low; the 
horizontal location shows whether the effect of that value caused 
a positive or negative impact on the model output, and also the 
strength of the impact. 

A calculation of the mean value of these ratings over all data 
points yields the overall feature importance across the entire 
dataset (Figure 8b). When the SHAP-based results were compared 
with domain expertise, many similarities were found: in both cases, 
maximum pressure was rated as an important feature. Also, as 
expected, the gradient between the start and switchover points 
appeared to exert a major influence. 
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By applying the SHAP method, we can now identify those features 
which most probably caused an anomaly for a specific sample. 
However, the features are still somewhat abstract, and it is not clear 
how a normal operator could take advantage of this information. 
These issues prompted the development of a “cause-of-failure 
qualifier” which relates anomalies to real machine settings. This 
is a basic requirement so that an operator can initiate appropriate 
countermeasures.

The method consists of two parts. First, the relationships between 
the extracted features and the machine settings are analyzed. 
One option that yields these relationships is the use of correla-
tion coefficients between all features and all machine settings in 
the dataset. The calculation of all possible correlation coefficients 
provides a correlation table that reflects the relationships between 
machine settings and features (Figure 9). Blue indicates a negative 
correlation; red, a positive one. The more saturated the colors are, 
the higher the absolute correlation.
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Fig. 9: Correlations between features and machine settings.

The correlation table for the machine settings was calculated 
with the help of data from the experiment. We used the machine 
settings and the features of all available data to calculate the 
normalized correlation factors for each feature with each machine 
setting. It can be seen that one or two machine settings are slightly 
under-represented in the features, and they do not have any 
strong correlations; this reduces the performance of the qualifier.

The second stage of the SHAP method yields the relationships 
between the anomalies and the causative features for each part. 
Both stages of the method were included and combined as 
appropriate in our cause-of-failure qualifier. In the event of an 
anomaly, this qualifier identifies the machine settings that are most 
likely related to its cause (Figure 8).
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Part Nr Feature 1 Feature 2 …
1 0.65 0.83
2 -0.31 0.17
3 -0.12 -0.22
… … …

Data Features

Isolation Forest

SHAP Correlation
Setting

Importance

Fig. 10: Flowchart to describe the working principle of the cause-of-failure qualifier.

Batch 3
Switchover point

reduced

Batch 9
Injection speed

reduced

Batch 15
Mold temperature

increased

This cause-of-failure qualifier predicts the most important machine 
setting for each plastic part, based on the top five features. Since 
the actual machine settings used during production were available 
to us, we were able to evaluate the cause-of-failure qualifier. 
Figure 10 describes the working principle of the method. The 
results showed that the predictions were very accurate for many 
batches (Figure 11). In batch 3, the switchover point was reduced; 
in batch 9, the injection speed was reduced; and in batch 15, the 
mold temperature was increased. In the future, the predictions 
could be further improved by fine-tuning the correlation table 
and adding features that correlate with the under-represented 
machine settings. In addition, taking domain knowledge into 
account, the use of direct causal relationships instead of correla-
tions is conceivable.

Fig. 11: The cause-of-failure qualifier outputs a pie chart showing the most likely 
machine setting that leads to a bad quality outcome.
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5. Outlook 

The objective going forward is to utilize this new technology 
to improve the setup of our systems. Work on improving and 
developing approaches such as the one described here will 
continue, with the goal of making the technology commercially 
available. Kistler is strongly committed to achieving the automation 
of monitoring and control processes in the injection molding world. 

We believe that sensor data and intelligent use of data are the keys 
to the successful implementation of this approach.
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